Фильтры от запаха воды

Основная проблема при заборе воды из скважин для индивидуального водоснабжения домов (коттеджей) – присутствие в ней различных примесей, отрицательно влияющих на физико-химические характеристики и вкусовые качества. При проведении водоочистных процедур наиболее востребованными являются фильтры для очистки воды из скважины от железа.

В промышленной отрасли существуют около десятка основных способов очистки загрязненной воды от присутствия железа, многие из них требуют сложного оборудования, значительного энергопотребления, дорогостоящих реагентов – то есть тех условий, которые недоступны в домашнем хозяйстве. Потому для бытового обезжелезивания водных ресурсов, получаемых из скважинных источников, использует наиболее простые, эффективные методы и относительно недорогое оборудование, отличные от промышленных технологий.

Рис. 1 Фильтры для очистки воды из скважины от железа в индивидуальных домах

Можно ли пить воду из скважины

Жители дачных посёлков часто сталкиваются с проблемой водоснабжения. Обычным решением является бурение скважины, которой могут пользоваться несколько домов. Такие скважины бурят не очень глубоко, поэтому водоносные пласты плохо защищены от попадания туда бактерий. Из таких скважин зачастую нельзя пить, и чтобы в этом убедиться, можно отнести жидкость на анализ.

Если такой возможности нет, то можно провести некоторый анализ самостоятельно:

  • Понаблюдайте за жидкостью во время её кипения. Этот процесс может выявить жёсткость. Если после кипячения на стенках или дне ёмкости остались отложения, значит, такую воду пить нельзя.
  • Налейте скважинную жидкость в любую ёмкость и оставьте на сутки. Если в ней образовался железистый осадок, она непригодная для питья.
  • Запах сероводорода нельзя не заметить. Такую воду чаще всего невозможно пить.

Разберёмся, как избавиться от избытка железа в воде, почему возникает запах сероводорода и как с этим бороться.

Как избавиться от железа

Понять, присутствует ли железо в скважинной жидкости, можно по нескольким признакам:

  • жёлтый или бурый оттенок;
  • радужная плёнка на поверхности жидкости;
  • запах и вкус железа.

Если все перечисленные или некоторые из признаков были обнаружены, то очистка просто необходима. Ниже представлены самые эффективные методы обезжелезивания.

Отстаивание

Отстаивание — наименее затратный и самый просто метод очистки жидкости от избытка железа. Способ заключается в том, что воду заливают в ёмкость и отстаивают какое-то время. Железо выпадает в осадок, который затем вымывается. На даче или в жилом доме объём резервуара должен соответствовать суточному потреблению. Преимуществами метода являются:

  • простота метода;
  • дешевизна;
  • водоснабжение не прекратится в случае отключения электричества;
  • параллельное удаление сероводорода.

Из недостатков можно выделить:

  • неполное удаление примесей;
  • необходимость часто отключать систему и промывать ёмкость от осадка.

Аэрация

Аэрацию можно отнести к самым эффективным методам очистки воды от железа. Суть метода заключается в контакте воды с кислородом, из-за чего растворённое железо окисляется до трёхвалентного нерастворимого и выпадает в осадок. На выходе обычно стоит фильтр для удаления выпавших частиц.

Преимуществом этого метода является его экологичность, отсутствие каких-либо реагентов. Кроме того, с помощью аэрации можно избавиться не только от железа, но и от сероводорода. Однако железо при этом удаляется не полностью, а процесс очистки довольно энергозатратен. Фильтры и резервуары требуют регулярной очистки.

Обратный осмос

Для очищения воды таким методом используют обратно-осмотические фильтры. Они очищают жидкость на молекулярном уровне, что делает такие фильтры наиболее эффективными в своей области. Мембраны задерживают примеси и растворённые в жидкости вещества. Основной функцией мембран является обеззараживание и очищение воды от солей. Обезжелезивание — неглавная функция обратно осмотического фильтра, однако, он отлично справится с этой задачей. Недостатком метода является его высокая стоимость.

Ионообменный метод

Очистить воду от железа из скважины можно путём ионного обмена. Этот метод осуществляется при помощи специальных фильтров. Фильтры содержат мелкогранулированную искусственную смолу, в которой содержатся свободные ионы натрия (реже — другого элемента). Когда жидкость проходит сквозь фильтр, происходит реакция замещения ионов железа на ионы натрия. Для восстановления фильтра проводят его регенерацию.

Озонирование

Для обезжелезивания воды иногда прибегают к введению туда окислителей: озона и хлора. Хлорирование — не слишком привлекательный способ, поскольку хлор вреден для здоровья и может оставаться в жидкости после процедуры. Озонирование — более безопасный способ, при котором применяются чистый озон и его производные.

Однако способ осложнён тем, что подача озона должна происходить в зависимости от определённых расчётов, которые нужно проводить самостоятельно (тип и количество примесей). Оборудование для проведения процедуры довольно дорогостоящее.

Катализаторы и реагенты

Использование реагентов для обезжелезивания наиболее распространено на промышленных предприятиях. Такой способ очистки требует дополнительной последующей фильтрации. Его суть заключается в том, что реагенты вступают в контакт с железом и выпадают в виде осадка. Очищение жидкости может производиться с помощью таких веществ, как гашёная известь, марганцово-кислый калий, гипохлорид натрия.

Очистка от сероводорода

Сероводород — это газ, растворённый в воде, образующийся в результате жизнедеятельности анаэробных бактерий. Такая вода имеет неприятный запах тухлых яиц и может быть опасна для здоровья. Запах сероводорода в воде из скважины может образоваться по нескольких причинам:

  • колодец давно не чистился;
  • водоносные пласты со всех сторон закупорены непроницаемым грунтом;
  • колодцу более трёх лет (в этом случае трубы могут стать негерметичными);
  • скважина проходит сквозь пласт сульфитных руд.

Сероводород — летучий ядовитый газ, которых довольно быстро распространяется по комнате. Длительное вдыхание этого газа приведёт к отравлению и другим неприятным последствиям. Поэтому при появлении сероводородного запаха воду из скважины необходимо сдать на анализ. Анализ примесей позволит наиболее точно подобрать очистительные фильтры.

Установка дегазатора

Поскольку сероводород — летучий газ, со временем он испаряется. Но мы привыкли использовать воду прямо из-под крана, а не отстаивать её в вёдрах. Поэтому газ должен испаряться прежде, чем попадёт в кран. Для этих целей существуют специальные устройства-дегазаторы. Они устанавливаются в подвалах зданий или на первом этаже. Устройства бывают двух типов: безнапорные и напорные.

Безнапорные устройства представляют собой негерметичные пластиковые баки, куда жидкость подаётся посредством распылительных форсунок. Вода в момент подачи насыщается кислородом, который губительно влияет на бактерии. Газ испаряется и не попадает в кран.

Напорные установки по объёму меньше безнапорных. Их принцип работы основан на насыщении жидкости кислородом, в котором бактерии гибнут, с помощью насоса.

Химический способ

Химический метод тоже основан на окислении сероводорода, только здесь в роли окислителя выступает не кислород, а озон, перекись водорода или гипохлорид натрия. В результате взаимодействия сероводорода с окислителем образуются нерастворимые вещества — сера, сульфаты. Они задерживаются фильтрами, и вода поступает в кран уже очищенной.

При сорбционно-каталитическом способе очистки применяются сорбционные материалы-катализаторы, ускоряющие реакцию окисления. Лучшим сорбентом в этом отношении является активированный уголь. Неотъемлемая часть этого метода — наличие кислорода, который подаётся в резервуар посредством аэрации.

Внимание! Бывают ситуации, когда запах сероводорода появляется при прохождении жидкости через водонагреватель, то есть пахнет только горячая вода. Это значит, что в ТЭНе накопились соляные отложения, которые содержат сульфаторедуцирующие бактерии. В этом случае поможет тщательная промывка ТЭНа. Необходимо удалить отложения и установить сорбционный фильтр.

Очищать жидкость от сероводорода необходимо не только в целях безопасности, но также и для продления срока службы водопроводных труб.

Зависимость видов загрязнений от глубины скважинного источника

Стоит отметить, что водозабор из скважин производят с разных глубин, поэтому по расстоянию от уровня земли источники условно делят на три группы:

Абиссинские. Рассчитаны на водоподачу из первого водоносного горизонта, обычно расположенного на глубинах 10 – 20 м от поверхности земли, насосными станциями. Их нередко бурят для дачи, частного дома при небольших объемах забора (полив огородов, заполнение накопительных емкостей).

В скважинах абиссинского типа основными источниками загрязнений являются поверхностные или грунтовые воды. Спектр вредных примесей на участке загородного дома может быть сколь угодно широким – микробы, бактерии, органика от автономных канализационных систем, химия от удобрений, продукты нефтепереработки и прочее.

Если водные ресурсы из абиссинского источника нуждаются в комплексной очистке, в большинстве случаев с задачей неплохо справляются фильтрующие резервуары с угольными засыпками.

Рис. 2 Примеры лабораторных анализов воды из артезианских скважин с превышением ПДК железа

На песке. Имеют глубину залегания от 30 до 60 м, водозабор производится при помощи погружных электронасосов. Основная проблема при их эксплуатации – повышенное содержание мелких взвешенных частиц глины и песка в скважине.

Поэтому для песчаных источников актуальна водоочистка от взвесей фильтрами грубой очистки с различным размером ячеек, с остальными вредными примесями вполне может справиться обычный угольный засыпной или картриджный фильтратор большого объема.

Артезианские. Самые глубинные скважины с обсадной колонной высотой от 100 до 200 м и высокой производительностью, связанной с тем, что на водоносный горизонт оказывают сильное давление расположенные выше почвенные пласты.

Водоносный бассейн артезианских скважин расположен в известняке, а сама скважинная вода обладает высокой степенью минерализации. В ней растворен широкий ряд оксидов металлов (кальций, магний), их окислов и солей (хлориды, сульфаты), в наивысшей концентрации находятся марганцевые, железосодержащие и сероводородные соединения, приносящие значительные неудобства потребителю.

Водоочистная система артезианских скважин должна отфильтровывать приведенные химреагенты, в основном железных окислов, концентрация которых в сравнении с другими соединениями обычно намного выше.

Рис. 3 Вид железосодержащих вод

Виды железа в воде из скважины

Существует несколько групп железистых соединений, к ним относят коллоидную органику, присутствующую в водяной среде в виде мелких (размер до 0,1 мкм) взвесей железосодержащих частиц. Иногда в природе встречается бактерии, перерабатывающие железо из растворимой формы в водонерастворимую – они образуют на поверхности источника радужную пленку.

Перечисленные виды соединений обычно не встречаются в артезианских скважинах из-за слишком большой глубины нахождения водоносного горизонта – вода из артезианок отличается кристальной чистотой.

Основные виды железа, которые в ней можно обнаружить:

Двухвалентное Fe2+. Присутствует в водной среде в свободном состоянии и полностью в ней растворено, поэтому невозможно на глаз определить его наличие и концентрацию. На предварительном этапе после бурения скважины убедиться в присутствии Fe2+ можно попробовав или понюхав воду.

В скважинной воде встречаются следующие разновидности растворимых железосодержащих соединений двухвалентного железа, к которым относят бикарбонат Fe(НСО3)2, карбонат FеСО3, сульфид FeS и сульфат FeSO4.

Трехвалентное Fе3+. При контактировании воздушных масс с Fе2+, последнее окисляется и образует водонерастворимые соединения Fe3+, от которых избавляются обычным отстаиванием или механической фильтрацией.

Другие разновидности железа. При контакте со стальной арматурой или трубами образуется водонерастворимая ржавчина, включающая в себя трехвалентный оксид железа Fe2O3 и метагидроксид Fe(OH)3, намного реже в воде встречается сульфаты (Fe2(SO4)3. Все эти реагенты могут быть легко отфильтрованы на различных этапах водоочистки.

Рис. 4 Схема реагентной водоочистки

Методы промышленного и бытового обезжелезивания, формулы техпроцесса

Для обезжелезивания воды в промышленных масштабах применяют следующие методы, которые хотя и не нашли практического применения в быту, но теоретически вполне могут быть использованы в индивидуальной водоочистке.

Реагентный

Так как водорастворимый Fe2+ при контактировании с кислородом из воздушной среды выпадает в водонерастворимый осадок в течение длительного времени, для ускорения процесса вместо воздушных масс используют окислительные реагенты. Если добавить в воду марганцовку KMnO4 или гипохлорит натрия NaOCl, в ней произойдут окислительные реакции с опусканием в осадок водонерастворимого Fe3+. Формулы реакций с окислителями:

Так как приведенная методика нуждается в точной дозировке химреагентов и сложной системе автоматики, она не нашла широкого хозяйственно-бытового использования.

Рис. 5 Предварительная водоочистка бытовым электролизером

Электролизный

Принцип технологии электролизного обезжелезивания состоит в образовании активного кислорода из содержащихся в водном объеме примесей под действием электротока. Для этого в водяную среду добавляют хлорсодержащее и иные реагенты, которые при прохождении электротока разлагаются на активные окислители: хлор Cl, кислород O2, водород H, озон О3, гидроксиды иона, формула реакции для хлора:

  • 2Fe2+ + Cl2 + 2H2O = 2Fe(OH)3↓ + 2HCl

К недостаткам водоочистки электролитическим методом относят высокое энергопотребление и необходимость добавления расходных материалов. Технология используется при содержании железа в воде не более 2 мл/л.

Рис. 6 Схема водоочистки озонированием

Озонирование

Система очистки воды от железа данным способом основана на более высокой окислительной способности трехвалентного озона О3 в сравнении с атмосферным двухвалентным O2. Установка включает в себя озонатор, производящий озон, который затем направляют в смесительную камеру с обрабатываемой водой. После реакции О3 с двухвалентным Fe2+ образуется нерастворимый осадок, выделяется кислород, водяная среда осветляется, дезинфицируется и в ней уничтожаются болезнетворная микробная и бактериальная флора.

Химическая формула процесса озонирования выглядит следующим образом:

  • 2·Fe2+ + O3 + 5·H2O → 2·Fe(OH)3 + O2 + 4·H+.

Широкому бытовому применению установок озонирования препятствует их взрывоопасность, сложность конструкции и высокая стоимость.

Рис. 7 Техпроцесс коагуляции по этапам и схема установки

Коагуляция

Если воду из скважины с высоким содержанием Fe2+ помещают в открытую емкость для отстаивания, полный процесс занимает довольно много времени, так как образующийся водонерастворимый осадок слишком медленно опускается на дно.

Для ускорения процедуры водоочистки и повышения ее качества отказываются от осаждения Fe3+, добавляя в водный объем коагулянты по технологии пропорционального дозирования насосами дозаторами. В результате осаждаемые частицы укрупняются, после чего раствор со взвесями пропускается через простые песчаные или антрацитовые фильтры для воды, которые задерживают железосодержащий коагулянт и не способны отсеивать более мелкие частицы.

Технология коагулирования широко применяется для очистки сточных вод, к недостаткам техпроцесса относят долгое время формирования крупных частиц и необходимость применения расходных коагулянтов.

В торговле встречаются коагулянты для хозяйственно-бытового применения (Гиацинт, Эко-матрица), которые можно использовать для очистки небольших объемов воды в походных условиях, правда сам процесс водоочистки занимает около 8 часов.

Рис. 8 Свойства железобактерий

Биологический

Не каждый фильтр для скважины на железо справится со своей задачей при превышении его предельно допустимых концентраций ПДК в сотни раз. В промышленности при наличии Fe2+ в воде более 40 мл/л, а также сероводорода и углекислого газа, при низком показателе рН применяют для обезжелезивания специальные бактерии.

Для этого воду пропускают через медленные гравийно-песчаные фильтраторы, содержащие колонии железобактерий, а затем образовавшиеся коллоидные частицы, продукты жизнедеятельности и бактериальные пленки отправляют в отстойники и пропускают через фильтры. После сорбционной фильтрации и обеззараживания ультрафиолетовым излучением вода полностью готова для дальнейшей очистки через мелкие угольные фильтры или установки обратного осмоса.

Понятно, что биоочистка при помощи железобактерий из-за сложности, нетрадиционных реагентов и длительного времени протекания техпроцесса относится к чисто промышленной технологии, непригодной для применения в быту.

Мембранный

Метод очистки пропусканием воды через мелкоячеистую мембрану под давлением относится к технологии обратного осмоса, где вместе с железом удаляются практически все примеси.

Комплексную очистку через мембраны нерационально и слишком дорого использовать только для обезжелезивания. К тому же обратный осмос работает при содержании Fe2+ в воде от 0,1 до 0,3 миллиграмма на литр, что не выходит за рамки предельно допустимых нормативов и не нуждается в фильтрации.

Рис. 9 Принцип мембранной водоочистки и устройство фильтра обратного осмоса

Методики обезжелезивания вод из индивидуальных скважин

Перед тем, как очистить воду от железа из скважины на даче или в загородном доме, обязательно проводят лабораторный анализ даже в том случае, когда присутствие в водяной среде Fe2+ удалось выявить визуально, по запаху или вкусовым качествам.

Дело в том, что лабораторный анализ позволяет определить процентное содержание железа в воде (предельно-допустимые концентрации (ПДК) Fe2+ составляют 0,2 – 0,3 мл на литр) методология обезжелезивания которого напрямую связана с его количеством.

Компрессорная (напорная аэрация)

Как было сказано выше, основной метод борьбы с растворимым Fe2+ – насыщение воды активными окислителями (Cl2, О3) или кислородом (О2), которой содержится в атмосферном воздухе. Формулы, описывающие процесс окисления кислородом железа, выглядят следующим образом: Fe2+ + О2 + Н2О → Fe(ОН)3 + H+

  • Fe2+ + O2 + 10·H2O → 4·Fe(ОН)3 + 8·H+

Для проведения процедуры напорной аэрации используют специальный мембранный компрессор, которой нагнетает воздух в напорный трубопровод или по трубе в колонну. В колонне кислород из водовоздушной смеси вступает в активную реакцию с растворимым Fe2+, излишки воздуха собираются в ее верхней части и выводятся наружу через воздухоотводной клапан. Образовавшийся нерастворимый осадок Fe3+ из колонны аэрации сливается в канализацию или подается на колонну обезжелезивания, где происходит его отфильтровывание в специальной засыпке.

Еще один более распространенный метод компрессорной аэрации заключается в насыщении находящейся в колонне водной среды воздушным потоком из компрессора через форсунку на дне емкости.

Стоит заметить, что метод компрессорного обезжелезивания применяют при самой высокой концентрации Fe2+ в воде от 10 мл/л, также с его помощью из воды эффективно удаляется сероводород H2S.

Рис. 10 Схемы компрессорной аэрации с насыщением воздухом внутри и снаружи колонны

Безнапорная аэрация (эжекторная)

Для увеличения площади контакта водных масс с воздушным кислородом используют разнообразные способы аэрирования:

  • фонтанирование (водоразбрызгивательные струйные установки);
  • душирование (капельное рассеивание водных струй внутри резервуаров);
  • барботаж (перемешивание или пропускание через водные массы воздуха);
  • эжектирование – перемешивание в трехвыводной эжекторной форсунке воды с воздухом за счет перепада давлений. При работе эжектора входной водный поток попадает в сужающуюся форсунку и за счет высокой скорости на ее выходе всасывает воздух из окружающей среды и перемешивается с ним.

Для безнапорного аэрирования в быту применяют следующие основные технологии:

  • Вода попадает в резервуар через мелкие распылительные форсунки, в которые она подается под давлением, в результате получают тонкодисперсный поток с размером капель до 150 мкм. При этом колонна заполняется водой до половины, а насыщение кислородом дисперсионных капель производится за счет подачи воздуха в емкость через воздушный клапан нагнетательным вентилятором.
  • Вода насыщается воздухом во внешнем эжекторе на трубопроводе или управляющем блоке, где водный поток на большой скорости всасывает воздух и перемешивается с ним.
  • Поступающая в емкость вода перемешивается с воздухом, который подается от маломощного компрессора со слабым напором через воздушный рассеиватель, размещенный на дне колонны.

Стоит отметить, что методы безнапорной аэрации при помощи эжектора и рассеивателя в быту не столь популярны, как компрессорная технология, и могут быть использованы при содержании Fe2+ в водной среде не более 3 мл/л.

Рис. 11 Аэрация душированием и барботажем

Реагентными катализаторами

Очистка воды от железа по технологии каталитического окисления на сегодняшний день является наиболее широко применяемой на мелких и средних предприятиях, станциях водоочистки небольших коттеджных поселков или отдельных частных домов.

Установки с реагентными катализаторами занимают небольшой объем и отличаются довольно высокой производительностью, способны пропускать водный поток объемом 0,5 – 30 м3/час (для примера, водоподачи объемом 1,5 м3/час достаточно для обеспечения хозяйственно-питьевой водой нужд дома с числом жильцов 3 – 5 человек).

Реакцию каталитического окисления железа в бытовых условиях проводят внутри колонн, изготовленных из стекловолокна и реже нержавеющей стали. Внутрь резервуара помещают окисляющую засыпку природного или искусственного происхождения с катализатором, легкий сорбент, кварцевый песок или мелкозернистый окатанный гравий, и пропускают воду через все слои. Образовавшийся после химреакции осадок в виде водонерастворимого Fe3+, который задерживаются в сорбенте, удаляют из насыпной загрузки периодическими обратными и прямыми промывками.

Основным компонентом в каталитических фильтрах выступает природный пиролюзит, содержащий в составе окислитель – двуокись (оксид) марганца МnO2. Оксид марганца относится к классу химических соединений, кристаллическая решетка которых стремится к восстановлению, то есть реагент является сильным окислителем, отбирающим кислород у менее активных элементов.

Рис. 12 Каталитическая установка с эжектором в клапанном модуле управления

Взаимодействие с наиболее распространенными в воде двухвалентным Fe2+ и марганцем Mn2+ выражается следующим химическими формулами:

  1. 2·R – MnO2 + Fe2+ + H2O → R – Mn2O3 + Fe3+ + 2OH–R – MnO2 + Mn2+ + 2·ОН– → R – Mn2O3 + H2O
  2. Fe3+ + 3·OH– → Fe(ОН)3↓, где

Fe(ОН)3↓ – водонерастворимый гидроксид железа;

R – матричные компоненты природного пиролюзита.

Отличительная особенность использования реакции каталитического окисления железа и марганца при помощи пиролюзита заключается в том, что его каталитическую способность можно восстановить добавлением в воду диоксида марганца MnO4–, химическая формула реакции выглядит следующим образом:

R-Mn2O3 + MnO4–+ H2O → 3·R-MnO2 + 2·OH–

Реагентная очистка в быту эффективна при содержании Fe2+ до 2 мл на литр и объемов прокачки до 2 – 3 м3/ч.

Рис. 13 Функции и засыпка колонны с ионообменной смолой

При помощи ионообменных смол

Фильтром для скважины от железа могут выступать ионообменные смолы, которые образуют катиониты. Технология ионного обмена основана на возможностях смол замещать удерживаемые на поверхности гранул положительные ионы натрия Na+ (катионы) более активными ионами двухвалентных металлов: кальция, магния, железа.

Находящиеся на поверхности смолы катионы металлов снова замещаются натрием при проведении процедуры регенерации. Для этого в колонну с засыпкой подают соляной раствор, крупинки смолы притягивает к себе ионы натрия, а двухвалентные металлы возвращается в воду и смываются вместе с ней в канализацию.

Ионообменное обезжелезивание эффективно при содержании Fe2+ в воде не более 1 – 2 мл на литр при ограничениях по кислотности pH и содержанию солей жесткости (до 10 градусов жесткости (мг-экв/л)).

Применение ионообменных смол только для отфильтровывания железа считается неэффективным по следующим причинам:

  • Находящееся в воде как результат окисления Fe2+ до попадания в ионообменную колонну нерастворимое трехвалентное Fe3+ засоряет своими частицами смолу и плохо удаляется при промывке.
  • Железные катиониты более активны и первые оседают на гранулах смолы, снижая эффективность очистки от марганцевых и кальциевых ионов.
  • Если в воде находится органическое железо, на гранулах смолы образуется пленка из органики, являющаяся подходящей средой для питания и размножения бактерий.

Таким образом, фильтр для скважины на железо с ионообменной смолой используют в основном для избавления от солей жесткости в комплексе и доочистки от железа, процесс носит название умягчение воды.

Рис. 14 Сравнение популярных технологий водоочистки

Фильтры для очистки воды из скважины от железа в быту

Стандартная очистка воды из скважины от железа включает в себя несколько ступеней, обычно на входе ставят фильтр грубой очистки и угольный на выходе, а количество и вид фильтрующих колонн между ними напрямую связан с химическим составом воды.

Для автоматического управления процессами промывки используют блоки клапанов, которые размещают на верху колонн, к ним также подводят входные и выходные патрубки подачи, отвода воды и солей регенерации. Основными производителями водоочистного оборудования для скважин как блоков управления, так и колон, являются американцы с брендом Clark и китайская фирма Runxin с не менее качественной, но более дешевой продукцией.

Для закачки воздуха обычно используют мембранные компрессоры без масла китайского (AS-19) или более качественные американского производства (АР-2, LP-12).

Рис. 15 фильтры для очистки воды из скважины от железа – грубой, тонкой и их сменные картриджи

Грубой и тонкой очистки

Как отмечалось выше, вода из артезианских источников отличается кристальной чистотой и теоретически не нуждается в предварительных фильтрах грубой очистки. Необходимость их применения объясняется тем, что полимерные трубопроводы из полиэтилена низкого давления ПНД или полипропилена ПП обладают высокой воздухопроницаемостью, что приводит к окислению Fe2+ в трубах с образованием нерастворимого осадка.

В качестве фильтров предварительной очистки можно использовать их любые разновидности с полимерными дисками или полипропиленовыми картриджами (Big Blue 10″, 20″). При этом следует учитывать, что чем больше объем фильтра и самого картриджа, тем реже он нуждается в обслуживании.

На выходе колон обезжелезивания устанавливают аналогичные предыдущим фильтры тонкой очистки с единственным отличием – вместо полипропиленовых картриджей с размером ячеек 10 – 50 мкм помещают сменные угольные на 1 – 5 мкм. Угольные фильтры эффективно очищают воду от хлорных и марганцевых соединений, нейтрализуют запахи, привкус и цветность.

Рис. 16 Конструктивное устройство и засыпка колонн обезжелезивания

Каталитические

Основным компонентом большинства каталитических фильтров служит диоксид марганца MnO2, выпускаемый в виде кристаллов темно-серого или темно-коричневого цветов размером 0,3 – 1 мм и плотностью до 5026 кг/м3. Благодаря высоким окислительным свойствам MnO2 широко используют в масляных красках для ускорения высыхания, в противогазах для защиты от угарного газа СО (окисляет его до углекислого газа СО2), в электротехнической отрасли при производстве гальванических батареек.

В системах водоочистки используют пиролюзитные руды с содержанием диоксида марганца более 40% и засыпным весом от 2000 до 4000 кг на кубометр. Это требует высокоскоростного водного потока при проведении обратной промывки или подачи воздуха под высоким давлением. Частицы горного пиролюзита благодаря высокой твердости (5 – 6 единиц по шкале Мооса) не подвержены разрушению при проведении многочисленных промывочных операций.

Рабочая поверхность пиролюзита ограничена площадью гранул и после длительного срока эксплуатации постепенно покрывается пленкой нерастворимых гидроокислов железа.

Из природных пиролюзитов изготавливают засыпки марок Catalox, MangOx, Pyrolox, Terminox, AquaMadix с содержанием оксида марганца до 75%. Относительно недавно на рынке появилась другая разновидность природных катализаторов с объемом MnO2 до 25%, к ним относят торговые марки Сорбент МС и Сорбент АС.

Помимо оксида марганца, для засыпки используют песок от 90 до 50% общего объема, уменьшающий насыпной вес смеси и тем самым повышающий качество процесса вспучивания фильтрующей массы при проведении процедуры обратной промывки.

Рис. 17 Последовательность и наименование реагентов серии ProMix для засыпки в ионообменную колонну

Стоит отметить, что добавление песка уменьшает производительность установки из-за меньшего количества катализатора MnO2, поэтому нередко перед колонной обезжелезивания дополнительно используют предобработку воды окислителями: гипохлоритом NaOCl, пероксидом водорода H2O2, марганцовкой KMnO4, кислородом O2 от компрессорной аэрации. При установке перед фильтром обезжелезивания колонны предварительной очистки, активный реагент MnO2 практически не расходуется и выступает как катализатор окислительных процессов.

Так как эксплуатация природного пиролюзита имеет ряд недостатков, для увеличения площади поверхности катализаторов и снижения их веса были разработаны синтетические материалы с применением неорганических ионитов. Основой для таких засыпок послужили цеолитовые, силикатные, алюмосиликатные, глауконитовые реагенты.

В этих материалах был реализован малый объемный вес с высокой устойчивостью гранул к истиранию, пористая очищающая структура с большим количеством макропор, устойчивость к слеживанию. При этом объем активного каталитического слоя после термического или химического введения в пористые гранулы удалось снизить от десятых долей до 5%.

Наиболее известные торговые марки синтетических катализаторов зарубежного производства: BIRM на основе алюмосиликата и Greensand с активным компонентом глауконита (производитель корпорация Clack Corporation, США). Из отечественных катализаторов по данной технологии выпускают засыпки с торговыми марками и следующих фирм: МЖФ на доломитовой основе (Альянс-Нева), МФО-47 на основе песчаника-горельника (МФО Компоненты), Экоферрокс на основе кристобалита (Аргеллит).

Рис. 18 Каталитические засыпки – стоимость в 2020 г

Ионообменные

Ионообменные смолы применяют в основном для комплексной очистки воды от водорастворимых оксидов металлов: кальция, железа, магния и марганца, находящихся в воде в приблизительно одинаковой концентрации.

Стоит отметить, что ионообменные установки не переносят наличие примесей сероводорода H2S – его перед подачей воды в колонну следует удалить.

Принцип действия ионообменных фильтров был описан выше, после прохождения через них вода становится слишком мягкой, поэтому рационально выбирать рабочий режим с увеличенными интервалами промывок для оставления в воде солей в пределах допустимых норм.

Для регенерации используют таблетированную соль NaCl (к примеру, производства ООО АкваСоль), которую помещают в солевой бак, временными интервалами между периодами подачи соли с промывкой управляет клапанный блок, размещенный на оголовке колонны.

Наиболее популярные марки ионообменных засыпок, реализуемые в торговой сети для установок удаления солей жесткости (умягчения воды): Экотар, Экомикс, FeroSoft, АПТ-2, Ionofer, КУ-1, Resinex, Катилакс.

Рис. 19 Комплексная система водоочистки с аэрированием в открытом баке

Как очистить воду из скважины от железа своими руками

Некоторые собственники загородных домов с ограниченными финансовыми средствами пытаются решить задачу, как очистить воду от железа из скважины с минимальными материальными затратами.

Если не рассматривать все технологии с заводским оборудованием, каталитическими, ионообменными засыпками, химическими реагентами из-за их высокой стоимости, то остаются два метода бюджетного обезжелезивания – отстаивание и аэрирование.

Технология в обоих случаях одинакова – повысить в воде содержание кислорода, превращающего растворимые двухвалентное окислы железа в нерастворимый осадок за счет контакта с атмосферным воздухом. При отстаивании результатов добиваются за счет длительного времени, при аэрировании – увеличением поверхности контакта водных масс с воздухом.

Обычно два метода сочетают, подавая в емкость рассеянный водный поток или воздушные пузыри от компрессора.

Стоит отметить, что наилучших по экономичности и эффективности результатов без использования компрессора можно добиться, если распылять воду сверху в резервуар большого объема через форсунки (технология душирования). Вместо обычного душа лучше использовать конструкцию, работающую в режиме водяного тумана, правда перед ней придется размещать мелкоячеистый фильтр механической очистки.

В этом случае площадь соприкосновения мелких водяных взвесей с атмосферным воздухом будет максимальной и соответственно значительно вырастет эффективность обезжелезивания.

Рис. 20 Стоимость оборудования для обезжелезивания торговой марки Clack 2020 г

Основная проблема артезианских скважин с кристально чистой водой – высокая минерализация, выражающаяся в большом количестве растворимых солей металлов: железа, магния, марганца, калия. Для избавления от оксидов используют фильтры для очистки воды из скважины от железа в составе комплексных установок заводского производства, обычно состоящих из ряда колонн (иногда и солевого бака), компрессора и управляющих клапанами электронных блоков.

  • Весь каталог
    • Системы очистки воды в квартире
      • Диспенсеры для воды
      • Фильтры для умягчения воды в квартире
      • Питьевые фонтанчики
      • Картриджи для фильтров воды
        • Картриджи для грубой механической очистки
        • Картриджи для тонкой механической очистки
        • Картриджи для умягчения воды
        • Картриджи обезжелезивания воды
        • Мембраны обратноосмотические, постфильтры и минерализаторы
        • Сорбционные угольные картриджи
      • Корпусы, ключи и кронштейны для фильтров
      • Смесители с питьевым краном
      • Механические фильтры грубой очистки
        • Комплектующие
      • Фильтры тонкой очистки воды
      • Системы обратного осмоса
      • Проточные питьевые фильтры
      • Системы обратного осмоса для квартиры
        • Мембраны для питьевых систем обратного осмоса
        • Комплектующие
      • Системы защиты от протечек воды
        • Защита от протечек Triple+
        • Комплектующие
      • Угольные фильтры для квартиры
    • Системы очистки воды в коттедже
      • Системы очистки воды из скважины
        • Анализ водопроводной воды
        • Водоподготовка для загородного дома
        • Очистка воды из скважины от железа
      • Системы очистки воды для загородного дома
      • Фильтры и системы водоочистки для дачи
      • Умягчение горячей воды в загородном доме
        • Очистка горячей воды от железа
        • Умягчение горячей воды
        • Комплектующие
      • Электрохимическая очистка воды для дома и коттеджа
      • Системы аэрации воды
      • Фильтры грубой очистки воды
        • Мешочные фильтры для воды
        • Комплектующие
      • Установки обеззараживания воды для дома и коттеджей
        • УФ обеззараживатели воды
        • Электрохимическая очистка воды
        • Обеззараживание питьевой воды
        • Системы обеззараживания воды
      • Системы обратного осмоса для дома
      • Угольные сорбционные фильтры для воды
        • Комплектующие
      • Очистка воды от сероводорода
      • Комплектующие для систем очистки воды
        • Аэрационные модули Титан
        • Блоки и двухходовые клапаны управления
        • Дозирующие оборудование
        • Дренажно-распределительные системы
        • Композитные корпусы для фильтров очистки воды
        • Реагентные колонны
        • Ph-корректоры
        • Счетчики для воды
        • Солевые и реагентные баки
    • Системы, станции и оборудование для очистки воды
      • Промышленные фильтры
      • Промышленные фильтры обезжелезивания
      • Механическая очистка воды для промышленности
      • фильтры тонкой очистка воды на производстве
      • Водоподготовка для энергетической отрасли
      • Промышленная водоподготовка и очистка воды на производстве
      • Промышленные фильтры для очистки воды на муниципальных и коммерческих объектах
      • Водоподготовка для ЖКХ
  • Системы очистки воды
    • Системы очистки воды OXIDIZER
    • Системы очистки воды BASIC
    • Системы очистки воды ECONOM
    • Системы очистки воды ДАЧНИК
    • Системы очистки воды DACHA
    • Системы очистки воды WATERBOX
    • Системы очистки воды MASTER
    • Системы очистки воды ELITE
    • Системы очистки воды CLASSIC
    • Системы очистки воды AQUACHIEF
    • Системы очистки воды STANDART
    • Системы очистки воды PREMIUM
    • Системы очистки воды STATUS
    • Системы очистки воды AQUADOSE
    • Системы очистки воды PRO
    • Системы очистки воды PureWater
  • Обезжелезивание
    • Системы очистки воды от железа
    • Установки для обезжелезивания воды
    • Фильтры обезжелезивания Clack
    • Фильтры обезжелезивания Runxin
    • Фильтры обезжелезивания Manual
    • Фильтры обезжелезивания под загрузку
    • Промышленные фильтры обезжелезивания
    • Условия эксплуатации фильтров обезжелезивания
  • Умягчение
    • Умягчители кабиного типа
    • Фильтры непрерывного умягчение воды
    • Фильтры умягчения «AQUACHIEF»

    • Фильтры умягчения «AQUACHIEF HYDROSOFT»
    • Фильтры умягчения «AQUACHIEF LEWATIT»
    • Фильтры умягчения «AQUACHIEF SOFTEX»
    • Фильтры умягчения «AQUACHIEF» (под загрузку)
    • Фильтры непрерывного умягчения RunXin
    • Фильтры непрерывного умягчения Clack
    • Фильтры непрерывного умягчения (под загрузку)
    • Ионообменные фильтры AQUADEAN
    • Ионообменные фильтры WaterBox
    • Умягчители воды Waterboss
    • Умягчители воды Softbox
    • Умягчители кабиного типа (под загрузку)
  • Системы обратного осмоса
    • Сисемы обратного осмоса
    • Системы обратного осмоса для квартиры
    • Системы обратного осмоса для дома
    • Промышленные системы обратного осмоса
    • Промышленные системы обратного осмоса Ecvols
    • Промышленные системы обратного осмоса Aquapro
    • Промышленные системы обратного осмоса Гейзер
    • Промышленные системы обратного осмоса АКВАТЕХ
    • Мембраны для квартирных систем обратного осмоса
    • Мембраны для промышленных систем обратного осмоса
    • Комплектующие для квартирных систем обратного осмоса
    • Комплектующие для промышленных систем обратного осмоса
  • Фильтрующие материалы
    • Уголь для очистки воды
    • Засыпка для обезжелезования
    • Смола для фильтров
    • Соль для умягчения воды (мешки 25 кг)
    • Соль для очистки воды в мешках
    • Соль таблетированная
    • Ингибиторы солеотложений
    • Реагенты и химреактивы
    • Реагенты для промывки труб
    • Коагулянты, флоккулянты
  • Услуги
    • Анализ воды
    • Тест наборы для анализа воды
    • Сервисные работы
    • Сервисные выезды
    • Монтажи систем очистки воды
    • Обвязка скважин
    • Монтажные и строительные работы
  • Акции
  • О компании
    • История компании
    • Преимущества
    • Этапы работы с клиентом
    • Лицензии и сертификаты
    • Гарантии
    • Наши клиенты
    • Наши работы
    • Наши сотрудники
    • Реквизиты
    • Вакансии
    • Политика конфиденциальности
  • Доставка и оплата
    • Рассрочка
    • Доставка
    • Оплата
  • Статьи
  • Контакты
    • Москва
    • Санкт-Петербург
    • Брянск
    • Иркутск
    • Краснодар
    • Красноярск
    • Крым
    • Новосибирск
    • Ростов-на-Дону
    • Татарстан
    • Чита
    • Ярославль

Типы фильтров при повышенном содержании железа

Самый простой способ фильтрации – использование традиционного кувшина с фильтром. В его верхнюю часть заливают воду и ждут, пока она пройдет через мембрану в нижнюю емкость. Этот вариант прост и удобен, кувшин можно расположить в любом удобном месте, фильтр менять просто, а стоит он достаточно дешево. Единственный недостаток – малый объем кувшина (всего 2-3 литра).

Фильтр-кувшин для очистки воды

Кувшинные фильтры следует периодически мыть теплой водой со слабым мыльным раствором, чтобы удалять осадок со стенок.

Еще один технически несложный и удобный вариант – применение компактной насадки на кран. Как правило, в таком фильтре используется адсорбирующий или ионный сетчатый фильтр, удаляющий не только железо, но и соли жесткости и соединения хлора. Поскольку вода из крана поддается под давлением, материалы фильтра отличаются большей плотностью в сравнении с теми, что используются для кувшинов. Такие насадки используются только для кранов холодной воды, имеют ресурс фильтрации в среднем около 1,5-2 тыс. литров. Эффективность подобных фильтров примерно как у кувшинов.

Насадка на кран для очистки воды

Наиболее продвинутый вариант – системы фильтров из 1-5 ступеней, устанавливаемые под раковину и способные обеспечивать скорость водоподготовки до 2,5 л в минуту. Очевидно, что чем больше фильтров, тем более разнообразным способам очистки подвергается вода, и тем выше ее качество на выходе.

Количество ступеней в фильтре Механизм очистки (по мере добавления ступеней) Удаляемые загрязнения (по мере добавления ступеней)
1 сорбционный Механические, частично соли жесткости и хлор
2 механический пестициды, нефтепродукты, тяжелые металлы
3 ионообменный
4 ультрафиолетовый или обратноосмотический
5 сорбционный запахи

Ресурсы таких фильтров 4 – 25 тыс. литров, причем отдельные ступени можно восстановить (пусть и не до первоначального ресурса) и повторно использовать.

Все методы фильтрации воды удаляют из нее не только железо, но и другие химические и механические примеси.

Схема фильтра для очистки воды

Немного о производителях фильтров

Компаний, производящих системы очистки воды, достаточно много, но остановимся только на некоторых самых распространенных.

  1. Aqualine (Тайвань). Компания специализируется на бытовых фильтрах с системой обратного осмоса, комплектующих и сменных элементах к ним. Продукция популярна за счет хорошего качества при приемлемых ценах.
  2. Aquafilter (Польша). Производит фильтры обратного осмоса, как бытовые, так и промышленные магистральные. Продукция хорошего качества, сертифицирована во многих странах мира.
  3. Aquafilter (США) . В ассортименте широкий спектр бытовых фильтров – от простейших механических, до сложных многоступенчатых, имеющих электронную систему контроля.
  4. Аквафор (Россия). Производит фильтры кувшинного типа, насадки на краны, многоступенчатые системы под мойку и всевозможные сменные и комплектующие товары к ним. Помимо них в ассортименте регенераторы и минерализаторы для обогащения воды полезными элементами. Компания – один из лидеров в производстве водоочистных систем России, сбывает свою продукцию еще в полтора десятка стран.
  5. Барьер (Россия). Выпускает фильтры-кувшины и сменные кассеты к ним, проточные фильтры (под мойку), комплектующие и расходные материалы.
  6. Гейзер (Россия). Выгодно отличается низкой ценой при высоком ресурсе продукции. Выпускает бытовые и промышленные системы водоочистки в виде кувшинов с фильтрами, мембранных устройств, многоступенчатых установок типа «под мойку», магистральных очистителей. Фильтры производят не только удаление хлора, железа, различных солей и прочих химических примесей, но также и бактериальную очистку.

Первые несколько литров после установки нового картриджа в фильтре обязательно будут мутными и черноватыми. Это нормально, так выглядят частички угольной пыли, которые растрясло при транспортировке.

Опасность избытка железа в питьевой воде

Железо – один из самых распространенных металлов в природе, и попадает он в грунтовые воды из-за эрозии почвы. Из-за малого размера частицы железа весят мало, поэтому легко переносятся с потоком воды и попадают в питьевые скважины и источники.

Избыток и недостаток железа в организме

Определить наличие повышенного количества этого металла визуально практически невозможно, а вот попробовав воду, легко – у нее появляется отчетливый металлический привкус. Но избыток Fe вреден не только с точки зрения неприятного вкуса. На посуде и сантехнических приборах это приводит к накоплению ржавых потеков, которые сложно отчистить даже агрессивными моющими средствами, на стиральных и посудомоечных машинах, а также в трубах быстро образуется накипь, стиранное белье остается с желтовато-рыжими пятнами. Вред для здоровья выражается в поражении печени, повышении риска проблем с сердечно-сосудистой и мочеполовой системами и понижении иммунитета.

Вода в квартирах еще перед поступлением потребителям проходит серьезную очистку и обеззараживание, но и то не всегда оказывается идеального качества. Для жидкости из скважины на даче фильтр становится единственной преградой и испытывает при этом серьезную нагрузку.

Чтобы не пришлось тратиться на обновление систем очистки слишком часто, стоит сразу приобрести устройства с высокой мощностью и хорошим запасом прочности, рассчитанные на большую нагрузку.

Принцип работы фильтра для обезжелезивания воды

Типовой фильтр для обезжелезивания воды выполняет свои функции с применением окисления соединений железа (двух- и трехвалентного). В ходе каталитических реакций растворенные в жидкости вещества переходят в твердое состояние. Далее они задерживаются в слое гранулированной загрузки, как обычные механические загрязнения.

«Зеленый песок» (Greensand) и другие специализированные засыпки аналогичного целевого назначения в начальном состоянии содержат марганцевый калий. Именно он активизирует необходимые химические реакции. Подобный результат можно получить при длительном отстаивании, с помощью принудительной аэрации. Но в данном случае можно значительно ускорить процесс, минимизировать размеры технологического оборудования.

Дополнительным преимуществом фильтра для воды от железа является возможность неоднократной регенерации действующего наполнителя. Когда он исчерпает свои начальные способности, выполняется промывка в обратном направлении сильным потоком воды. Эта процедура удаляет накопленные загрязнения в канализацию. Далее засыпку восстанавливают раствором «марганцовки». Когда процесс завершен – установка переключается в обычный режим. Данный процесс занимает более 90 минут. Поэтому фильтр для обезжелезивания воды из скважины программируют на ночные часы, чтобы не создавать неудобства потребителям.

Рейтинг фильтров для умягчения и обезжелезивания воды: Альтернатива стандартным технологиям обезжелезивания воды:

  • Электронное флокулирующее устройство «Аквафлоу»
  • Магнитный преобразователь воды «Неомаг»

Описание типовых наборов оборудования

Чтобы реализовать такой проект понадобятся следующие компоненты:

  • Бак для основной и вспомогательной засыпки.
  • Емкость для хранения и приготовления восстановительного раствора.
  • Соединительные трубы и электромагнитные клапаны, которые обеспечивают перемещение жидкости в нужном направлении.
  • Блок управления и контроля для автоматизации процессов промывки и регенерации.

Понятно, что одним из важнейших условий при выборе является устойчивость к разрушительной коррозии. Баки, в частности, специалисты предпочитают из полимеров. Такие емкости не ржавеют, сохраняют целостность корпусов и герметичность соединений после десятков лет непрерывного использования.

Другие требования сформулировать будут проще после детального ознакомления с параметрами типового фильтра и ограничениями, установленными производителем:

Параметр

Единица измерения

Значение

Номинальная производительность

м. куб. в час

0,8-1

Объем наполнителя

дм. кв.

Количество восстановительного реагента (на 1 цикл)

гр

Объем чистой воды на одну промывку /регенерацию

дм. кв.

Уменьшение давления при прохождении потока воды через фильтр

кгс на см. кв.

0,45-0,65

Габариты емкости для регенерационного раствора (ширина х глубина х высота)

см

320 х 320 х 1600

Максимальное содержание примесей железа на входе/ выходе

мг на дм. куб.

9-10/0,15-2

Допустимый диапазон водородного показателя, в котором обеспечивается номинальная эффективность обработки

рН

от 6,8 до 8,8

Напор в системе трубопровода

бар

Температура жидкости

°C

Мощность потребления (блок управления)

Вт

Для автоматизации рабочих операций применяют одну из следующих схем:

  • По времени – процесс обезжелезивания, очистки и умягчения воды запускается с применением интервалов, установленных на таймере.
  • По объему – в этом случае специальный счетчик фиксирует количество перемещенной в магистрали воды.